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Abstract
In recent years, the extensive application of biometric identification has been witnessed in various fields, such as airport
service, criminal investigation, counter-terrorism and so on. Due to the sensitivity of the biometric data, people’s concern
over the leakage of their biometric data is a critical obstacle to hinder the future adoption of biometric identification
applications. To address this problem, many schemes focusing on the privacy protection during biometric identification
process have been proposed. However, identifying an individual in a huge database still faces many challenges while
considering privacy protection and efficiency at the same time. In this paper, an efficient and privacy-preserving cloud based
biometric identification scheme (named MASK) is proposed based on the M-tree data structure and symmetric homomorphic
encryption (SHE) scheme. With MASK, the privacy of the user’s identification request and service provider’s dataset is
guaranteed, while the computational cost of the cloud servers in searching the biometric dataset is significantly reduced.
Besides, the accuracy of the identification service is not lost. Detailed security analysis shows that MASK can resist various
known security threats. In addition, MASK is implemented and evaluated with a synthetic dataset and a real face dataset,
and extensive simulation results demonstrate that MASK is efficient in terms of computational and communication costs.
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1 Introduction

Biometric identification aims to identify a person among
a group of individuals based on her/his biometric feature
and has been applied in many areas, such as airport service,
criminal investigation and counter-terrorism, etc [11, 17, 18,
22, 30]. For example, when the police find some biometric
traits at a crime scene, they search these biometric traits
in known offender databases to find possible culprits. In
a typical biometric identification system, the user submits
a biometric template as the identification request to the
service provider who owns a biometric template dataset,
then the service provider compares the identification request
with all the biometric templates in the dataset to get the
identification result. Since the searching process is very time
consuming and the service provider may not be equipped
with enough computer power, the service provider trends
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to outsource the dataset to the cloud to provide efficient
identification service. However, in such a scenario, the
user’s identification request and service provider’s dataset
may be leaked to the cloud server. Since the biometric trait
is unique and stable, which means a biometric trait can
be linked to exact person and cannot naturally change a
lot in a short time, the leaked biometric trait will lead to
a more serious result. Furthermore, an increasing number
of biometric data breach events in recent years [3, 5]
greatly increase people’s concern over the disclosure of their
private data [20, 31], which hinders prosperity of biometric
identification service.

To address this problem, many schemes have been
proposed to protect the privacy of biometric data in the
identification service [1, 6, 7, 12, 16, 23, 25, 28, 34].
However, these schemes merely design privacy-preserving
and efficient methods for the similarity comparison of
two biometric templates and few schemes focus on the
efficiency of searching process. The searching process in
these schemes directly traverses the whole dataset to get the
identification result. Therefore, the computational costs in
these schemes are linear to the size of the dataset, which will
be inefficient while searching in a huge dataset.
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In this paper, we propose an efficient and privacy-preserving
cloud based biometric identification scheme, named MASK,
based on the M-tree data structure and symmetric homo-
morphic encryption (SHE) algorithm. With MASK, the pri-
vacy of user’s identification request and service provider’s
biometric dataset is guaranteed during the biometric iden-
tification process. Meanwhile, the computational cost of
the cloud servers in searching the template dataset is far
less than traverse the dataset directly. Specifically, the main
contributions of this paper are threefold.

First, MASK can provide privacy-preserving biometric
identification service. By introducing a SHE scheme, the
similarity between two biometric templates can be securely
computed with two cloud servers. Based on this, the
privacy of the user’s biometric template and the service
provider’s biometric dataset are guaranteed in the identifi-
cation service.

Second, MASK can achieve efficient biometric identifi-
cation. By introducing the M-tree data structure, an efficient
index is built on the biometric dataset. With this index, the
computational cost of the cloud servers while searching the
template dataset is significantly reduced. Besides, the com-
putational cost of building the M-tree and the communication
cost of our proposed scheme also keep at a low level.

Third, to evaluate the performance of MASK, we
implement our proposed scheme in Java and test the
computational and communication cost on a synthetic
dataset. The evaluation result shows that MASK is more
efficient than other similar schemes. In addition, we also test
the accuracy of our proposed scheme on a real face dataset
with the face template extracted by the FaceNet algorithm.
The results show that the accuracy rate is almost the same
with original FaceNet algorithm.

The remainder of the paper is organized as follows. In
Section 2, we first formalize our system model, security

model, and identify our design goal. Then, we review some
preliminaries, including an SHE scheme, FaceNet algorithm
and the M-tree data structure in Section 3. After that, we
present our proposed scheme in Section 4, followed by
security analysis and performance evaluation in Section 5
and Section 6, respectively. Some related work is discussed
in Section 7. Finally, we draw our conclusion in Section 8.

2Models and design goal

In this section, we formalize our system model, security
model and identify our design goals.

2.1 Systemmodel

In our system model, we consider a cloud based biometric
identification system which consists of three entities,
namely service provider, cloud servers and the client, as
shown in Fig. 1.

– Service Provider: The service provider (SP) has a set
of biometric templates T = {T1, T2, ..., Tn} of size n

and wants to provide biometric identification service to
the users. Since SP may be not powerful in computing
and storage, it tends to outsource the dataset to cloud for
offering biometric identification service to query users.
Each biometric template Ti ∈ T (1 ≤ i ≤ n) can be
denoted as an l-dimension vector Ti = {ti1 , ti2 , ..., til }.
For the simplicity and clear description, we assume the
value of each tij (1 ≤ j ≤ l) is a positive integer, since
biometric template can be transformed into a positive
integer vector under a given accuracy level. Figure 2
shows an example of the process of converting the
template data into positive integers.

Fig. 1 System model under
consideration
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Fig. 2 An example of data
conversion process. a shows a
data slot from a face template
extracted by FaceNet where
each dimension lies in the range
(-1,1). b shows the result of
keeping four decimal places of
the original data. c shows result
of converting the data xi into
positive integer
�(xi + 0.999) × 1000�

– Cloud Servers: The cloud servers (CSs) are held by
third parties, which are powerful in both computing
and storage. In our system, there are two cloud servers,
namely cloud server 1 (CS1) and cloud server 2 (CS2)
working together to complete the biometric template
searching. Note that, in our system model, whether two
biometric templates are considered to be the same is
measured by some similarity between them, e.g., the
cosine similarity, Euclidean distance, etc.

– Client: The client in our system model is held
by an application which aims to access biometric
identification service. In the identification stage, the
client submits an identification request to the cloud
servers, which contains the biometric templates Tr =
{tr1 , tr2 , ..., trl }, and gets the response on whether or not
Tr ∈ T . Here “Tr ∈ T ” means that there exists a
biometric template Tj ∈ T which makes the Euclidean
distance ED(Tr, Tj ) less than or equal to a given

threshold δ, i.e., ED(Tr, Tj ) =
√∑l

i=1(tri − tji
)2 ≤ δ.

Note that, though our system model just considers one
client, it is natural to extend one client with multiple
query users.

2.2 Security model

In our security model, we consider the service provider
and the client are fully trusted, while the cloud servers
are honest-but-curious, which means they will faithfully
execute the designed protocols, but will also try to get
as much information as they can. Specifically, two cloud
servers may try to obtain sensitive information from the
identification request and the biometric template set T .
Meanwhile, we assume that the two cloud servers will
not collude with each other. Note that, since we focus on
the efficient and privacy-preserving biometric identification

in this paper, active attacks on data integrity and source
authentication from external adversaries are beyond the
scope of our work. Those active attacks will be discussed in
our future work, although it is not difficult to apply some
mature digital signature and message authentication code
techniques to tackle these attacks.

2.3 Design goal

Under the aforementioned system model and security
model, our design goal is to propose an efficient and
privacy-preserving biometric identification scheme. In par-
ticular, the following three objectives should be achieved.

– Privacy: The proposed biometric identification scheme
should be privacy-preserving, which means the biomet-
ric data stored in the biometric template dataset and
identification request should not be leaked. Specifically,
the two cloud servers cannot obtain sensitive data from
the identification request and the biometric templates in
the database.

– Efficiency: The proposed biometric scheme should be
efficient in terms of computational cost. There are
two problems that can lead the biometric identification
system impractical. On one hand, the cloud server needs
to search for the target biometric template through the
whole biometric template dataset at the identification
stage, which will be quite time-consuming when the
template dataset is large. On the other hand, in
order to achieve the privacy-preserving requirements,
some additional operations are introduced, which
will significantly increase the computational cost.
Therefore, some measures should be taken to ensure the
efficiency of the proposed scheme.

– Accuracy: The accuracy of the proposed biometric
scheme should be guaranteed. Although the privacy
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and efficiency are the primary targets of our proposed
scheme, they should not be achieved at the expense of
accuracy, which will significantly reduce availability of
the identification scheme.

3 Preliminaries

In this section, we briefly review the FaceNet face recog-
nition system [24], symmetric homomorphic encryption
(SHE) scheme [19] and the M-tree data structure [8], which
will serve as the building blocks of our proposed scheme.

3.1 FaceNet face recognition system

FaceNet [24] is a face recognition system based on the
deep convolutional network. In FaceNet, there are mainly
two phases: the training phase and the matching phase. In
the training phase, given a face image x, a mapping from
a face image x to a compact Euclidean space R

d is built
firstly. Then, based on the mapping, a Euclidean embedding
f (x) ∈ R

d can be calculated for representing the face
image x. In the matching phase, two face images x and y

are given, which can be represented as two embeddings:
f (x) = (x1, x2, . . . , xd) and f (y) = (y1, y2, . . . , yd). To
evaluate the similarity of x and y, the squared L2 distance
of the two embeddings f (x), f (y) can be computed as
D(f (x), f (y)) = ∑d

i=1(xi − yi)
2. Then, a threshold δ is

used to determine whether the two faces x, y are the same
(denoted as Rsame) or different (denoted as Rdiff ). The
decision process is performed as follows,
{

(x, y) ∈ Rsame, if D(f (x), f (y)) ≤ δ;
(x, y) ∈ Rdiff , if D(f (x), f (y)) > δ.

3.2 Description of SHE

As a symmetric homomorphic encryption scheme, SHE has
been proved secure under the known-plaintext attack [19],
and mainly consists of three algorithms, namely key
generation, encryption and decryption.

– Key Generation: Select three security parameters
(k0, k1, k2) satisfying k1 � k2 <

k0
2 , generate the

secret key SK = (p, q,L), where p, q are two large
prime numbers with |p| = |q| = k0, and L is a
random number with the bit length |L| = k2. Then,
compute N = pq and set the public parameter PP =
(k0, k1, k2,N ). At the same time, set the message space
M as {0, 1}k1 .

– Encryption: A message m ∈ M can be encrypted with
the secret key SK = (p, q,L) as

c = E(m) = (rL + m)(1 + r ′p) mod N ,

where r ∈ {0, 1}k2 and r ′ ∈ {0, 1}k0 are two random
numbers.

– Decryption: A ciphertext c = E(m) can be decrypted
with the secret key SK = (p, q,L) as

m = D(c) = (c mod p) mod L,

The correctness of the decryption can be proven as
follows.

D(c) = (c mod p) mod L
= (((rL + m)(1 + r ′p) modN ) mod p) mod L
= (rL + m) mod L (∵ 2k2 < k0)

= m (∵ k1 � k2)

Given the public parameter PP , SHE will satisfy the
following homomorphic properties:

– Homomorphic Addition-I: Given two ciphertexts c1 =
E(m1) = (r1L+m1)(1+ r ′

1p) mod N , c2 = E(m2) =
(r2L + m2)(1 + r ′

2p) mod N , we have c1 + c2 →
E(m1 + m2).

– Homomorphic Multiplication-I: Given two ciphertexts
c1, c2, we have c1 · c2 → E(m1 · m2).

– Homomorphic Addition-II: Given a ciphertext c1 =
E(m1) = (r1L+ m1)(1 + r ′

1p) mod N , and a plaintext
m2, we have c1 + m2 → E(m1 + m2).

– Homomorphic Multiplication-II: Given a ciphertext c1

and a plaintext m2, we have c1 · m2 → E(m1 · m2).

3.3 M-tree

M-tree technique [8] is a data structure which can be used
to achieve efficient similarity search in a metric space. A
metric space [32] is denoted as M = (D, d), where D is a
domain of feature values and d is a distance function with
the following properties:

1. Symmetry. ∀ Ox, Oy ∈ D, d(Ox, Oy) = d(Oy, Ox)).
2. Non-negativity. ∀ Ox, Oy ∈ D,

{
d(Ox, Oy) > 0, if Ox 
= Oy;
d(Ox, Oy) = 0, if Ox = Oy .

3. Triangle inequality. ∀ Ox, Oy, Oz ∈ D, d(Ox, Oy) ≤
d(Ox, Oz) + d(Oz, Oy).

Specifically, a M-tree is built on a given dataset from a
metric space in a bottom-up way. There are two types of
nodes in an M-tree, namely internal nodes and leaf nodes,
and each node is constrained by sphere-like regions of
the metric space. Both two types of nodes contain several
entries and have a preset fixed capacity C. Each internal
node entry can be seen as the root of a subtree and it can be
denoted as 〈Or, d(Or, P (Or)), r(Or), ptr(T (Or))〉, where
Or is the feature value of the pivot which is also an object
of the dataset, d(Or, P (Or)) is the distance of Or from
the pivot of its parent, r(Or) is the covering radius of this
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subtree, and ptr(T (Or)) is the pointer to the root of subtree
T (Or). For simplicity, we call the feature value of the
internal node entry’s pivot as the feature value of the internal
node entry. A leaf node entry contains a data object of the
dataset and is denoted as 〈Oj, d(Oj , P (Oj ))〉, where Oj is
the feature value of the object, d(Oj , P (Oj )) is the distance
of Oj from the pivot of its parent. Fig. 3 shows an example
of a M-tree generation process based on a given dataset
obtained from a metric space with Euclidean distance.

The operations of the M-tree mainly consist of insertion,
tree-building and range query.

– Insertion: When a data point x ∈ D needs to be
inserted, it is recursively descended through the M-
tree to locate the most suitable leaf node. The insertion
process at each node is shown in Algorithm 1.

– Tree-building: When we start to build a M-tree on the
given dataset D, we add the first data object x ∈ D to
the empty M-tree and built a M-tree with a root node
and a leaf node. Then we run the insertion algorithm to
add all the remaining data objects to the M-tree.

– Range Query: M-tree supports both KNN query and
range query. The query range algorithm consists of
two processes, namely the subtree pruning process
and the data object verification process. The subtree
pruning process aims to prune some redundant subtrees
to improve the query efficiency, while the data object
verification process concentrates on verifying whether
an object satisfies the query requirements. In the query

range algorithm, a range query (q, r) means to find out
whether there exists an object p in the dataset satisfying
d(p, q) ≤ r , and the range query algorithm at a node
is described in Algorithm 2. Since the distance to the
parent pivot has no meaning for the root node, it will be
treated as 0 in the pruning process.

Fig. 3 An example of a M-tree built on a given dataset
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4 Our proposed scheme

In this section, we will present our privacy-preserving M-
tree based biometric identification scheme (MASK), which

mainly consists of four phases: 1) System initialization; 2)
M-tree Building and Encryption; 3) Encrypted Identifica-
tion Request Generation; 4) Biometric Identification. For a
clear description, the overview of our proposed scheme is
first shown in Fig. 4. At first, SP generates system param-
eters and distributes them to the client and cloud servers.
Then, SP builds a M-tree based on the biometric template
dataset, encrypts it with the SHE algorithm and outsources
it to CS1. In the identification stage, the client sends the
encrypted identification request to CS1, and two cloud
servers work together to get the identification result and
return it to the client.

4.1 System initialization

In the system initialization phase, SP generates the system
parameters, publishes the public parameters and distributes
cryptographic parameters to the client and CSs. Specifically,
SP chooses the security parameters (k0, k1, k2), generates
the secret key SK = (p, q,L) and sets the public
parameters PP = (k0, k1, k2,N ) for the SHE algorithm,
where N = p · q. Then, SP calculates the ciphertexts for
numbers 0 and 1 with the secret key SK , and we denote
them as E(0) and E(1). Next, SP sets the identification
threshold δ, which indicates two biometric templates will be
considered the same if the distance between two templates
is under δ. After all parameters are generated, SP publishes
{PP, δ}, sends {E(0), E(1)} to the client and transmits the
secret key SK to CS2.

Fig. 4 Overview of our proposed scheme
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4.2 M-tree building and encryption

In this phase, SP builds a M-tree based on the biometric
template dataset T at first. Then, SP encrypts the M-
tree with the secret key SK . Eventually, SP transmits the
encrypted M-tree to CS1.

• Stage 1: M-tree building

At first, SP builds a M-tree over the biometric dataset
T = {T1, T2, ..., Tn} following the M-tree building algo-
rithm. In the M-tree, all biometric templates are stored in
the internal node entry and leaf node entry, and we denote
the feature value of the leaf node entry and internal node
entry as Ti = {ti1 , ti2 , ..., til } and Oi = (oi1, oi2, · · · , oil),
respectively. Then, SP calculates the square of modulus-
length of the feature value of each node entry, where
|Oi |2 = ∑l

j=1 O2
ij and |Ti |2 = ∑l

j=1 t2
ij . Next, SP

expands each internal node entry and leaf node entry
by mounting |Oi |2 and |Ti |2 to corresponding entry. The
expanded internal node entry and leaf node entry are rep-
resented as 〈Oi, d(Oi, P (Oi)), r(Oi), ptr(T (Oi)), |Oi |2〉
and 〈Ti, d(Ti, P (Ti)), |Ti |2〉, respectively.

• Stage 2: M-tree encryption

After the M-tree is built, SP encrypts the M-tree using
SHE. Specifically, each expanded internal node entry and
leaf node entry are encrypted with SK . The encrypted
internal node entry and leaf node entry are denoted as
〈E(Oi), d(Oi, P (Oi)), r(Oi), ptr(T (Oi)), E(|Oi |2)〉
and 〈E(Ti), d(Ti, P (Ti)), E(|Ti |2)〉, respectively. After
encrypting the M-tree, SP outsources the encrypted M-tree
to CS1.

4.3 Encrypted identification request generation

The client has a face template and wants to verify whether
the template Tr exists in the biometric dataset T . To get
the identification result, the client needs to send Tr to the
cloud server as an identification request. At first, the client
computes the square of modulus-length of the face template
|Tr |2 = ∑l

i=1 tri . Then the client encrypts |Tr |2 and Tr

with SHE. Since the client does not have the secret key SK ,
the encryption is completed with E(0) and E(1) according
to the homomorphic properties of SHE. For the template
Tr = {tr1, tr2, · · · , trl}, the ciphertext of Tr is calculated as

E(Tr) = (E(tr1), E(tr2), · · · , E(trl)),

where

E(tri) = E(1 · tri + 0 · ri) = E(1) · tri + E(0) · ri,

and ri ∈ {0, 1}k2 is a random number. Then, the client
encrypts |Tr |2 by

E(|Tr |2) = E(1·|Tr |2)+E(0·rtr ) = E(1)·|Tr |2+E(0)·rtr ,

where rtr ∈ {0, 1}k2 is a random number. When the
encryption is completed, the client sends

〈
E(Tr), E(|Tr |2)

〉
to CS1.

4.4 Biometric identification

In this section, CS1 and CS2 work together to search Tr in
the M-tree to get the identification result. The search process
consists of two stages, i.e., the subtree pruning stage and the
leaf node verification stage.

• Stage 1: Subtree Pruning Process

Upon receiving the identification request, CS1 and
CS2 collaboratively prune the subtrees which do not
have an intersection with the query range at first.
The subtree pruning process follows the pruning algo-
rithm of M-tree and starts from the root node of
the M-tree. For an encrypted internal node entry
〈E(Oi), d(Oi, P (Oi), r(Oi), ptr(T (Oi)), E(|Oi |2)〉, CS1
calculates

E(d(Oi, Tr)
2) = E(|Oi |2)+E(|Tr |2)−2

l∑
j=0

E(oij )E(trj )

to confirm whether Oi
′s subtree Oj has an intersection

with the query range. Since E(|Oi |2) and E(oij ) are stored
in the encrypted M-tree and E(|Tr |2) and E(tri) can be
obtained from the identification request, it is easy for CS1 to
get the result. After that, CS1 sends E(d(Oi, Tr)

2) to CS2
to get the plaintext. Since CS2 has obtained the SK from
SP in the System initialization stage, CS2 can decrypt the
ciphertext. After getting the plaintext from CS2, CS1 checks
whether

|d(Oj , Oi) − d(Oi, Tr)| > r(Oj ) + δ

holds, where d(oj , oi) = d(oj , P (oj )). If it does, it means
that this subtree does not intersect with the query range and
will be pruned from the M-tree. Since the root node does
not have a parent node, the judgment condition of an entry
in the root node is d(Oi, Tr) > r(Oi) + δ.

After finishing the pruning process, all the subtrees that
do not intersect with the query range have been pruned from
the M-tree.

• Stage 2: Leaf Node Verification Stage

To verify whether Tr exists in the pruned M-tree, two cloud
servers work together to traverse all remained leaf node
entries. We take the verification process of one leaf node
entry as an example. Assume there is an encrypted leaf
node entry 〈E(Ti), d(Ti, P (Ti)), E(|Ti |2)〉, CS1 computes
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the ciphertext of the square of the distance between Ti and
Tr by

E(d(Ti, Tr)
2) = E(Ti)

2 + E(Tr)
2 − 2

l∑
j=0

tij · trj .

Then CS1 sends E(d(Ti, Tr)
2) to CS1 to get the plaintext.

While receiving E(d(Ti, Tr)
2), CS2 decrypts it with the

secret key SK , and returns d(Ti, Tr)
2 to CS1. After getting

d(Ti, Tr)
2, CS1 calculates the positive square root of

d(Ti, Tr)
2 to get d(Ti, Tr). Eventually, CS1 checks whether

this leaf node entry satisfies the query requirements by
judging whether d(Ti, Tr) < δ holds. If it does, it means this
leaf node entry satisfies the requirements, and CS1 returns
the result that template Tr exists in dataset T to the client.
Inversely, if all the remained leaf node entries are checked
but none of them satisfies the requirements, CS1 returns the
result that Tr does not exist in the dataset.

5 Security analysis

In this section, we will analyze the security of our proposed
privacy-preserving biometric identification scheme, which
mainly focuses on the privacy-preserving properties. Specif-
ically, the biometric templates and user’s identification
request should be privacy-preserving.

5.1 The privacy of the biometric templates

According to our security model in Section 2, keeping
the privacy preservation in biometric templates means to
prevent the cloud servers from obtaining the plaintext of the
biometric template. In MASK, only the M-tree Building and
Encryption and Biometric Identification stages are related to
the biometric template.

In the M-tree Building and Encryption stage, SP builds a
M-tree based on the biometric template dataset T , encrypts
the M-tree using the SHE algorithm and outsources the
encrypted M-Tree to CS1. Since SP is trusted, the pri-
vacy of the biometric templates in the M-tree building and
encrypting process is guaranteed. The M-tree sent to CS1
is stored in the encrypted form. Specifically, each internal
node entry and leaf node entry is encrypted and stored in the
form

〈
E(Oi), d(Oi, P (Oi)), r(Oi), ptr(T (Oi)), E(|Oi |2)

〉
and

〈
E(Ti), d(Ti, P (Ti)), E(|Ti |2)

〉
, respectively. Note that

all ciphertexts are generated by the SHE cryptosystem
which has been proven to be secure against the known-
plaintext attack in [19]. The security of the SHE cryp-
tosystem guarantees that the adversary has no idea on the
plaintext without knowing the secret key SK = (p, q,L).
Since CS1 does not have the private key SK and CS2 can
not get the ciphertext of the encrypted node entry, both two

cloud servers can not decrypt the feature value based on the
assumption that two cloud servers will not collude. There-
fore, the privacy of the biometric templates is guaranteed in
the M-tree Building and Encryption stage.

In Biometric Identification stage, after receiving a
identification request from a client, CS1 and CS2 work
together to search in the M-tree. Specifically, CS1 computes
the encrypted distance between the encrypted Tr and some
entries in the M-tree. Then CS1 sends the encrypted distance
to CS2. CS2 decrypts the distance and returns the plaintext
to CS1. While getting the plaintext of the distance, CS1
continues the subtree pruning or the leaf node verification
to complete the identification process. In this stage, CS1
can obtain the encrypted biometric template, the encrypted
identification request and the distance between them, while
CS2 can only get the distance between the biometric
template and identification request. According to the system
model, only CS2 knows the secret key and two cloud
servers do not collude. Since the biometric template and
identification request are two high dimension vectors, CS1
can obtain neither plaintext of the biometric template nor
Tr only through the distance between them. As CS2 only
gets distance between Tr and some entries, she/he can infer
nothing about the specific data of them based on this.

Besides, since the M-tree is built based on the Euclidean
distance between the biometric templates, CS1 can know
which templates are closer to each other. However, all the
template stored in the M-tree are encrypted by the SHE
algorithm, and CS1 can not infer the specific data of the
templates. To sum up, the biometric dataset is privacy-
preserving in our proposed scheme.

5.2 The privacy of the identification request

According to our security model in Section 2, protecting the
privacy of the identification request means to prevent the
cloud servers from getting the plaintext of the Tr . In MASK,
the biometric identification request is only processed in the
Encrypted Identification Request Generation and Biometric
Identification stages.

In the Encrypted Identification Request Generation
stage, the client encrypts Tr based on the homomorphic
property of the SHE algorithm, then the client sends〈
E(Tr), E(|Tr |2)

〉
to CS1. Since the secret key SK is

only known by CS2, the encrypted identification request〈
E(Tr), E(|Tr |2)

〉
is only sent to CS1 and the two cloud

servers will not collude with each other, both the two cloud
servers can not get the plaintext of the identification request
in this process. Therefore, the privacy of the identification
request is guaranteed in the Encrypted Identification
Request Generation stage.

In the Biometric Identification stage, both CS1 and CS2
can obtain the distance between Tr with some biometric

2178 Peer-to-Peer Netw. Appl. (2021) 14:2171–2186



templates in the dataset T . CS1 knows the ciphertexts of the
identification request and these biometric templates, but it
can neither decrypt the ciphertext nor conclude the specific
data of the identification request. CS2 has the secret key
SK , but it can get neither the ciphertext nor the plaintext
of these templates, hence CS2 can not get the identification
request. Therefore, the privacy of the identification request
is guaranteed in the Biometric Identification stage.

In addition, when the client submits two identification
requests from the same person in two identification service,
CS1 may find these two identification requests are from the
same person. However, CS1 still can not get the specific data
of the identification request or the biometric template. From
the above, the biometric identification is privacy-preserving
in MASK.

6 Performance evaluation

In this section, we evaluate the performance of MASK in
terms of computational cost, communication cost and the
identification accuracy and make the comparison with [29].
In order to have a better evaluation of the scheme, we
consider two face datasets: a real face dataset and a synthetic
dataset. The real dataset [10] is provided by University of
Essex and it is used to test the accuracy of our proposed
scheme on a real dataset. The synthetic dataset is a randomly
generated dataset which is used to test the performance.

6.1 Evaluation Environment

In order to measure the integrated performance, we
implement both schemes with Java and run our experiments
on an Intel Core i7-8750H CPU@2.1 GHz Windows
Platform with 16GB RAM. Specifically, we set the
parameters of the SHE scheme as k0 = 4096, k1 = 70 and
k2 = 2000 and the capacity of the M-tree node as C = 50.
And two datasets are prepared as follows.

– Real Dataset. A dataset contains face images collected
from 153 individuals (including 113 male students, 20
male students and 20 stuffs) and there are 20 images per
individual. In this paper, we use the FaceNet algorithm
to extract face features from these face images at first.
Each face feature is a 512-dimension vector and all the
face features live on the same hypersphere which means
each of the dimensions of the vector is in the range [-
1,1] and the sum the squared of each dimension is equal
to 1.

– Synthetic Dataset. We randomly generate a synthetic
dataset which contains 8 × 104 face features. Each
face feature is a 512-dimension vector and all face
features lie in the same range (−1, 1) as the face feature
extracted by the FaceNet.

6.2 Computational cost

In this section, we will evaluate the computational
cost of MASK while processing the biometric template
dataset, encrypting the identification request and searching
the biometric templates which are corresponding to the
computational cost in M-tree Building and Encryption,
Encrypted Identification Request Generation and Biometric
Identification, receptively. We analyze each computational
cost at first and test it over the synthetic dataset. For the
sake of simplicity, we denote the computational cost of
the modular addition and the big integer multiplication as
Cm−add and Cm−mul , respectively. Since [29] is designed
based on the transformation of matrix, we denote the
computational cost of the integer multiplication and integer
addition as Ci−add and Ci−mul , respectively. In addition, we
assume the size of the dataset is n and the length of the each
face template is l. The computational cost of each phase of
the two schemes is evaluated as follows.

– Computational cost of processing the biometric
dataset. In our proposed scheme, the service provider
takes charge of the dataset processing. In the M-tree
building and encryption stage, SP builds a M-tree
on the plaintext of the biometric template dataset T .
Since the construction of the M-tree is executed by
inserting each template in the T into the M-tree, the
computational cost of SP while building the M-tree is
O(n). In the M-tree encryption, SP needs to encrypt all
the internal node entries and leaf node entries in the
M-tree. According to the encryption algorithm of SHE,
3 big integer multiplication and 2 modular addition
are required while encrypting a plaintext. There are n

leaf node entries and
∑

( n
Cw �), where Cw+1 > n

and Cw < n internal node entries in the M-tree. The
feature value of the leaf node entry and the pivot of the
internal node entry are both l dimension vectors. The
computational cost of encrypting the M-tree is less than
(n+∑

( n
Cw �))(3Cm−mul +2Cm−add)l, where Cw+1 >

n and Cw < n. Figure 5a and b show the computational
cost of building and encrypting the M-tree varies with
dataset size n, respectively.

In [29], the encryption of the dataset consists of
two steps. In the first step, the data owner hides each
biometric template using random matrix. To hide a
biometric template, the data owner needs to compute
(l + 1)2 integer multiplication. Then, the data owner
encrypts each biometric template using the matrix
transformation. The data owner needs 2(l + 1)2(l +
3) integer multiplication and 2l(l + 1)(l + 3) integer
addition while encrypting each biometric template.
Hence, the computational cost of the data owner while
encrypting the dataset in [29] is 2n(l + 1)3Cr−mul +
2nl(l + 1)2Cr−add . Figure 5c shows the integrated
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Fig. 5 The computational cost of processing the biometric dataset

running time of process the biometric dataset in both
two schemes. It can be seen that the computational cost
in MASK is much lower than that in [29].

– Computational cost of encrypting the identification
request In our proposed scheme, the client encrypts
the identification request before sending it to the
cloud servers. In the encrypted identification request
generation stage, the client encrypts each dimension
of the face feature using two ciphertexts E(0) and
E(1). 2 big integer multiplication and 1 modular
addition is needed while encrypting each dimension
of the face feature and there are l + 1 data to
be encrypted. Therefore, the computational cost of
generating the encrypted identification request is
(l + 1)(2Cm−mul + Cm−add).

In [29], the data owner encrypts the identification
request and sends it to the cloud server. The data
owner blinds the identification request at first, and then
encrypts it with matrix. (l + 1)2 integer multiplication

is needed in the blinding stage and (l + 1)3 integer
multiplication and (l(l + 1)2) integer addition are
required in the encrypting stage. Therefore, the
computational cost of encrypting the identification
request is (l + 1)2(l + 2)Ci−mul + l(l + 1)2Ci−add .

– Computational cost of biometric identification
In our proposed scheme, two cloud servers work

together to find the closest match biometric template
with the identification request in the M-tree in
the biometric identification stage. The computational
cost of MASK in this stage depends on distribution
of the templates on the M-tree, where the computational
cost consists of ( n

C
+ logC) and n + ∑

( n
Cw �),

where (Cw+1 > n and Cw < n), distance
calculation operation under the best and worst case
respectively. Figure 6a and b show the computational
cost of searching for the template of CS1 and CS2
varying with dataset size n under the synthetic dataset
respectively.
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Fig. 6 The computational cost of cloud servers

In [29], the cloud server traverses the encrypted
dataset to find the closest matching with the identifica-
tion request. (l + 1)2(l + 3) integer multiplication and
l(l + 1)(l + 3) integer addition are required while cal-
culating the distance between the identification request
and a biometric template in the dataset. The compu-
tational cost of the cloud server while traversing the
biometric dataset is n(l + 1)2(l + 3)Ci−mul + nl(l +
1)(l+3)Ci−add . The comparison of the integrated com-
putational cost of two schemes while searching the
biometric templates is shown in Fig. 6c.

6.3 Communication cost

In this section, we will evaluate the communication cost of
our proposed scheme in sending the encrypted biometric
template dataset, transmitting the encrypted identification
request and searching the biometric templates which are
corresponding to the communication in M-tree Building and

Encryption, Encrypted Identification Request Generation
and Biometric Identification receptively. We analyze the
communication cost at first and test it over the synthetic
dataset. For the sake of simplicity, we denote the bit length
of a integer as Li . Later, we test the communication cost
on the synthetic dataset. Specifically, we set the integer bit
length Li = 32 in the experiment.

– The communication cost of sending the encrypted
biometric dataset In the M-tree build and encryption
stage, SP generates a M-tree on the plaintext of the
biometric dataset T and encrypts all the node entries
in the M-tree. According to the SHE, the size of
the ciphertext is k0 bits. Since there are n biometric
templates and at most  n

C
�w, where Cw+1 > n and

Cw < n and the feature value of the leaf node entry
and the pivot of the internal node entry are both l

dimension vectors, the size of the encrypted M-tree is
k0(n +  n

C
�w)l bits.
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Fig. 7 The communication cost of each stage

In [29], after the encryption process, each biometric
template is represented by a (l + 1) × (l + 1) matrix
and there are n biometric templates in the biometric
dataset. Hence, the communication cost of sending the
encrypted biometric dataset is n(l + 1)2Li . Figure 7a
shows the communication cost of sending the encrypted
biometric dataset changes with dataset size n in both
two schemes.

– The communication cost of sending the encrypted
identification request

In the encrypted identification request generation
stage, the client encrypts identification request and
sends it to the cloud server. Since the face feature in
the identification request is l dimension, there are l + 1
ciphertext to be sent. The ciphertext of SHE is k0 bits
and ciphertext sent to the cloud servers is (l + 1)k0 bits.

In [29], the encrypted identification request is
denoted as a (l + 1)2 matrix and communication cost

of sending the encrypted identification request is (l +
1)2Li .

– The communication cost of searching the biometric
template

In the biometric identification stage, two cloud
servers work together to searching on the M-tree to
find closest match of the identification request. In the
subtree pruning process and leaf node verification stage,
CS1 sends ciphertexts to CS2 to get the corresponding
plaintexts. The communication cost of our proposed
scheme in this stage depends on distribution of the
templates on the M-tree, where the communication
cost consists of ( n

C
+ logC) and n + ∑

( n
Cw �), where

(Cw+1 > n and Cw < n), interaction between CS1 and
CS2 under the best and worst case respectively. Figure 7b
and c show the communication cost of CS1 and CS2
varying with dataset size n respectively. Since there
is only one cloud server in [29], no communication
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cost are generated in this stage. It can be seen that the
communication cost of sending the encrypted dataset in
MASK is much lower than that in [29].

6.4 Accuracy

In our proposed scheme, No error is introduced by the
encryption scheme or the M-tree data structure. The
only reason that may lead to the similarity between the
identification request and biometric templates in the dataset
being changed is the process of converting the face template
data into positive integers, but this error is quite trivial.
Therefore, the accuracy of our proposed scheme stays
almost the same as the FaceNet algorithm. We test the
accuracy of our proposed scheme and the original FaceNet
algorithm over the real dataset [10], the result shows that
the accuracy rate is almost the same as original FaceNet
algorithm.

7 Related work

In this section, we will briefly review some related work on
the privacy-preserving biometric identification.

In the early, privacy-preserving biometric identification
schemes are designed under a two-party model, where the
matching process between the candidate template and the
template in the data set is directly executed by the data
owner. Huang et al. [15], Blanton et al. [4] and Barni
et al. [2] proposed three party privacy-preserving biometric
identification schemes based on the secure computation
protocol. Hirnao et al. [13], Higo [12] and [21] proposed
three privacy-preserving biometric identification schemes
based on the homomorphic encryption scheme. These two-
party schemes mainly focus on how to achieve privacy-
preserving biometric template matching, and the efficiency
is not well guaranteed. Specifically, Since the matching
process is completed on the data owner, it requires that
the data owner should be equipped with strong computing
power which can not be satisfied in many cases.

In order to release the data owner from heavy compu-
tational cost burden, some schemes are presented in an
outsourced environment, where the data owner outsources
the encrypted biometric data set to the cloud server and the
matching process is completed on the cloud. Yuan et al. [29]
proposed the first cloud based privacy-preserving biomet-
ric identification scheme using a matrix encryption scheme,
where the biometric data set and identification query are
both encrypted and sent to the cloud server by the data
owner. However, Wang et al. [26] and Zhu et al. [36] pointed
out that [29] is not secure under the known-plaintext attack
model [9]. In addition, [26] presented a privacy-preserving
biometric identification scheme with a new biometric data

encryption based on the similarity matrix under the same
system model in [29] and the security analysis showed [26]
had a higher security level than [29]. Zhang et al. [33]
proposed an efficient privacy-preserving biometric identifi-
cation scheme based the matrix and perturbed terms with
lower time cost and bandwidth consuming than [29] and
[26]. Wang et al. [27] proposed an inference-based frame-
work for privacy-preserving similarity search in Hamming
space and achieved privacy-preserving biometric identifica-
tion based on it. Hu et al. [14] proposed a privacy-preserving
biometric identification scheme in outsourcing environment
with two non-colluded servers based on the homomorphic
encryption and batched protocols. With the help of the
cloud, the computing cost of data owner during the biomet-
ric matching is significantly reduced in the above schemes.
However, in [26, 29, 33], the data owner has to keep online
to encrypt the user’s query data and decrypt the identifi-
cation result, which whittles some advantages of the cloud
computing away and leads heavy load to the data owner if
it serves too many users at the same time. What’s more, in
all the cloud based schemes above, the searching process is
not optimized which means the searching cost of the cloud
server is linear with the size of the data set. Despite the
cloud server is equipped with strong computing power, it
may still run into bottleneck while simultaneously servering
too many users.

To address this issue, some researchers begin to focusing
on how to reducing the researching time to sub-linear which
will significantly ease the pressure of cloud server. Zhu
et al. [35] proposed an cloud-assisted privacy-preserving
biometric identification scheme. With the help of an
asymmetric scalar-product preserving encryption scheme
and R-tree, sub-linear search efficiency is achieved in [35].
Nevertheless, the data owner also needs to be keep online
in [35]. Since R-tree is not constructed based on the metric
relation between the data objects, the cloud server needs
to traverse the tree for twice to find the closest biometric
template in the data set, which reduces the efficiency of the
searching process.

In this paper, to protect the security of the biometric data
and reduce the time cost in the biometric searching process,
we introduce SHE and M-tree to construct a privacy-
preserving biometric identification scheme based on two
no-colluded cloud servers. Compared with previous works,
the service provider in our proposed scheme does not need
to keep online in the identification scheme and the efficient
identification service is achieved.

8 Conclusion

In this paper, we proposed an efficient and privacy-
preserving M-tree based biometric identification scheme,
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named MASK. By introducing the SHE scheme, the
privacy of the user’s identification request and the service
provider’s dataset is guaranteed. Based on the M-tree data
structure, the computational cost of the cloud servers is
significantly reduced. Detailed security analysis showed the
security of our proposed scheme, and extensive experiments
were conducted to demonstrate its efficiency in terms of
computational and communication costs.
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